

© 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED.
Approved for public release. Distribution unlimited PR_23-02103-1.

DevSecOps Best Practices Guide

FINAL

Version 1.1

June 2023

 Record of Changes

© 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED. ii
Approved for public release. Distribution unlimited PR_23-02103-1. DevSecOps Best Practices Guide

Record of Changes

Version Date Author / Owner Description of Change CR

1.0 January 2020 MITRE Initial Draft
1.1 June 2023 MITRE Updated and PRS # added

CR: Change Request

 Executive Summary

© 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED. iii
Approved for public release. Distribution unlimited PR_23-02103-1. DevSecOps Best Practices Guide

Executive Summary

Application development programs leverage Agile and DevOps software development
methodologies to support the continuous integration and continuous delivery required for their
business solutions. At the same time, systems continue to be a primary target for bad actors due
to the sensitive nature of mission data. DevSecOps accelerates delivery by automating the
required security and privacy processes for threat modeling, generating security and privacy
documentation artifacts, change and source control management, static and dynamic code
analysis, infrastructure hardening, and least functionality checks.
This document describes proposed best practices (e.g., standards, processes, and technologies) to
ensure that trusted applications and solutions are securely developed and continuously delivered
to end users.
DevSecOps Best Practices include:

• Security Validation as Code – Testing standards, testing content (code), and automation
tools to effectively know “is it secure?”

• Documentation as Code – Testing standards, testing content (code), and automation
tools to effectively know “how am I secure?” to help maintain System Security Plan
(SSP) documentation.

• Change Management Auditing – Processes to foresee significant security testing
changes in a Sprint (Security Impact Analysis), and pipeline auditing to track
unauthorized changes during builds. Answers the question: “what changed?”

• Reporting – Reporting and integration requirements to comply with stakeholder use of
security data from the DevSecOps lifecycle. Stakeholders include developers,
Information System Security Officers (ISSOs), Security Assessors, security operations
center staff, and Federal Information Security Modernization Act (FISMA) reporting
teams.

• Operational Analytics – Best practice process to engineer application audit log triggers
during development to detect anomalies during operations and use this data to adapt to
and plan for the next application development Sprint.

• DevSecOps Process Improvement – Describes what to measure and how to analyze the
data to constantly improve the project’s DevSecOps process. Improve future builds using
metrics and measures of security debt, unauthorized changes during development, and
detection of anomalies during operation.

 Table of Contents

© 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED. iv
Approved for public release. Distribution unlimited PR_23-02103-1. DevSecOps Best Practices Guide

Table of Contents

1. Introduction .. 1

1.1 Background ..1
1.2 Purpose ...1
1.3 Scope ..2
1.4 Audience ...2
1.5 Document Organization/Approach ..2

2. Goals and Objectives ... 3

2.1 Benefits of DevSecOps ..3
2.2 Constraints ..3

3. Exemplar DevSecOps .. 4

3.1 Top Qualities of DevOps ..4
3.2 Top Qualities of an Exemplar DevSecOps Framework ...5
3.3 Value of Building Security into DevOps ...5
3.4 Benefits of Building Security into DevOps ..6
3.5 Exemplar DevSecOps Components ...6

3.5.1 Required Standards ...6
3.5.2 Required Processes ...7
3.5.3 Required Technology ..7
3.5.4 Authorized Pipeline/Process Fidelity ..8

4. DevSecOps Best Practices ... 12

4.1 Current DevSecOps Best Practice Focus Areas ...12
4.1.1 Security Validation as Code Best Practice ...14
4.1.2 Security Documentation as Code Best Practice ..24
4.1.3 Change Management Auditing Best Practice ...25
4.1.4 Control Coverage for Current Best Practices Focus Areas27

4.2 Future Best Practice Focus Areas ...28
4.2.1 Reporting Best Practices ...28
4.2.2 Operational Analytics Best Practices ..30
4.2.3 DevSecOps Process Improvement Best Practices ..30

Appendix A. NIST SP 800-53 Security Control Coverage Details 32

Appendix B. Security Control Mapping to SANS Top 25 CWE 36

Appendix C. Security Control Mapping to OWASP Top 10 ... 37

Acronyms ... 38

 FINAL
 List of Figures

© 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED. v
Approved for public release. Distribution unlimited PR_23-02103-1. DevSecOps Best Practices Guide

List of Figures

Figure 3-1 Exemplar DevSecOps Methodology ... 4

Figure 4-1 Security Data Needed by the ISSO and Developer each Sprint 13

Figure 4-2 User Stories Supported by Current DevSecOps Best Practice Areas 13

Figure 4-3 Automated Security Data needed from the DevOps Pipeline 14

Figure 4-4 Current Best Practice Area Support for DevSecOps “Infinity Loop” 14

Figure 4-5 Shifting Security Testing “Left” to Fix Security Defect as Early as Possible 15

Figure 4-6 Technology Approach for Security Validation as Code Best Practice Area 15

Figure 4-7 InSpec Open Source Testing Framework as an Option for Security Validation as Code
Best Practice Area ... 16

Figure 4-8 Open Source InSpec-based Option for Secure Configuration, Vulnerability, and Least
Functionality Validation Checks ... 17

Figure 4-9 Testing Content for Security Validation as Code: Current InSpec Profiles 17

Figure 4-10 NIST SP 800-53 Security Control Context for InSpec Tests 18

Figure 4-11 Data Mapping Tools for Static & Dynamic Code Analysis Tool Output 19

Figure 4-12 Example Data Viewing Tools – using Heimdall + SIEM Tools 20

Figure 4-13 Example Data Viewing with Heimdall – Summary and Graphical Views 21

Figure 4-14 Example Data Viewing with Heimdall – Test Results List View 22

Figure 4-15 Example Data Viewing with Heimdall – Details View .. 22

Figure 4-16 Example Data Viewing with Heimdall – InSpec Testing Code View 23

Figure 4-17 Example Data Viewing with Heimdall – Static Code Analysis Tool Output View . 24

Figure 4-18 Example of using InSpec Profile output for Security Documentation 25

Figure 4-19 Change Management Auditing Best Practice Area supported by an SIEM tool 26

Figure 4-21 NIST SP 800-53 Security Control Coverage when Building Security into DevOps 28

Figure 4-22 Example of an ISSO’s Compliance Assessment/Audit Tracking (CAAT)
Spreadsheet, Generated by Open-Source Heimdall tool .. 29

Figure 4-23 Security Control Assessment Team use of DevSecOps Security Data for ATO
Processes ... 29

Figure 4-24 Operational Analytics Best Practice Support for DevSecOps “Infinity Loop” 30

Figure 4-25 DevSecOps Cycle Improvement Best Practice Support for DevSecOps “Infinity
Loop” .. 31

Figure 4-26 AWS InSpec Profile - Security Control Coverage .. 32

Figure 4-27 Red Hat InSpec Profile – Security Control Coverage ... 33

 FINAL
 List of Tables

© 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED. vi
Approved for public release. Distribution unlimited PR_23-02103-1. DevSecOps Best Practices Guide

Figure 4-28 NGINX InSpec Profile – Security Control Coverage ... 34

Figure 4-29 PostgreSQL InSpec Profile – Security Control Coverage .. 35

List of Tables

Table 1 - DevSecOps Pipeline/Process Checklist ... 9

 FINAL

© 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED. vii
Approved for public release. Distribution unlimited PR_23-02103-1. DevSecOps Best Practices Guide

This page is intentionally blank.

 FINAL
 Introduction

© 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED. 1
Approved for public release. Distribution unlimited PR_23-02103-1. DevSecOps Best Practices Guide

1. Introduction

1.1 Background
Application development programs leverage Agile and DevOps software development
methodologies to support the continuous integration and continuous delivery required for their
business solutions. At the same time, systems continue to be a primary target for bad actors due
to the sensitive nature of mission data. DevSecOps accelerates delivery by automating the
required security and privacy processes for threat modeling, generating security and privacy
documentation artifacts, change and source control management, static and dynamic code
analysis, infrastructure hardening, and least functionality checks.

1.2 Purpose
This document describes proposed best practices (e.g., standards, processes, and technologies) to
ensure that trusted applications and solutions are securely developed and continuously delivered
to end users.
DevSecOps Best Practices scope include:

• Security Validation as Code – Testing standards, testing content (code), and automation
tools to effectively know “is it secure?”

• Documentation as Code – Testing standards, testing content (code), and automation
tools to effectively know “how am I secure?” to help maintain System Security Plan
(SSP) documentation.

• Change Management Auditing – Processes to foresee significant security testing
changes in a Sprint (Security Impact Analysis), and pipeline auditing to track
unauthorized changes during builds. Answers the question: “what changed?”

• Reporting – Reporting and integration requirements to comply with stakeholder use of
security data from the DevSecOps lifecycle. Stakeholders include developers,
Information System Security Officers (ISSOs), Security Assessors, security operations
center staff, and Federal Information Security Modernization Act (FISMA) reporting
teams.

• Operational Analytics – Best practice process to engineer application audit log triggers
during development to detect anomalies during operations and use this data to adapt to
and plan for the next application development Sprint.

• DevSecOps Process Improvement – Describes what to measure and how to analyze the
data to constantly improve the project’s DevSecOps process. Improve future builds using
metrics and measures of security debt, unauthorized changes during development, and
detection of anomalies during operation.

 FINAL
 Introduction

© 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED. 2
Approved for public release. Distribution unlimited PR_23-02103-1. DevSecOps Best Practices Guide

1.3 Scope
This guidance applies to all FISMA applications processing mission data developed using a
DevOps methodology. This guidance strives to build security into DevOps environments to
mature to a DevSecOps methodology.

1.4 Audience
All system developers and maintainers, Business Owners, and ISSOs operating under an
Agile/DevOps methodology; security assessors; and security operations center (SOC) staff.

1.5 Document Organization/Approach
This document is organized as follows:

Section Purpose
Section 2: Goals and Objectives Identifies high-level goals, objectives, alignments, and

strategies to ensure a comprehensive solution to enable
Agile/DevOps environments to produce secure code and
applications. Also identifies any constraints to be managed as
they pose risk to the objectives needed to enable Agile/DevOps
environments.

Section 3: Exemplar DevSecOps Defines the best qualities of an exemplar DevSecOps
methodology and a maturity model for reaching this exemplar.

Section 4: DevSecOps Best
Practices

Discusses the current and future focus areas to help achieve
the exemplar DevSecOps methodology.

Appendix A NIST SP 800-53 Security Control Coverage Details
Appendix B Security Control Mapping to SANS Top 25 CWE
Appendix C Security Control Mapping to OWASP Top 10
Acronym List Defines the acronyms used in this document

 FINAL
 Goals and Objectives

© 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED. 3
Approved for public release. Distribution unlimited PR_23-02103-1. DevSecOps Best Practices Guide

2. Goals and Objectives
The DevSecOps vision is to enable the rapid release of trusted business applications with

• Defined effective and approved DevOps processes
• Reduced overall time to receive an initial Authorization to Operate (ATO)
• Continuous security data available Sprint-to-Sprint to maintain an ATO
• Automated security scanning, monitoring, testing and artifact generation
• Security and privacy risks and issues identified and resolved early in development

2.1 Benefits of DevSecOps
• Built-In Security and Privacy. DevSecOps encourages Business Owners to satisfy

security and privacy requirements as part of their daily DevOps pipeline.
• ATO Ready. This integrated process rapidly delivers a more secure solution that satisfies

many of the criteria needed to receive an ATO during development rather than at the end
of development.

• Automation. Use of automation eliminates manual tasks, frees staff to work on unique
problems, and can reduce the total pipeline time to deliver a trusted solution. Examples of
areas for automation include security scanning, monitoring, and testing.

• Issues Addressed Earlier. Identifying and removing security and privacy risks and
issues earlier saves resources and time.

2.2 Constraints
The following constraints must be managed as they pose risk to the objectives needed to enable
Agile/DevOps methodologies:

• Workforce risks due to shortage of skilled DevSecOps staff
• Integration risks due to lack of coordination across all related development and

operational areas, including security and privacy

 FINAL
 Exemplar DevSecOps

© 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED. 4
Approved for public release. Distribution unlimited PR_23-02103-1. DevSecOps Best Practices Guide

3. Exemplar DevSecOps
DevSecOps requires a culture of trust and collaboration among development, operations, and
security teams. Figure 3-1 illustrates how DevSecOps streamlines the delivery of secure
solutions. The Defining Phase incorporates security and privacy requirements in the system
architecture and design. During the Solving Phase, developers conduct Sprints that include
security and privacy testing to identify vulnerabilities early in the development pipeline
promoting proactive, incremental corrections prior to merging changes into the main build.
Iteratively removing issues within each Sprint mitigates security and privacy technical debt to
better position the system for initial ATO. The deployed system moves into continuous
monitoring during the Delivering Phase, with fully automated processes to help manage the
security and privacy posture.

Figure 3-1 Exemplar DevSecOps Methodology

3.1 Top Qualities of DevOps
The primary quality that distinguishes a DevOps framework from all other methods of building
and operating an application is: repeatability. All steps used to build and operate the application
are recorded, so building the application again using the same steps will yield the same result.
This supports the ability to troubleshoot root cause of detected defects by minimizing the number
of variables introduced during a development cycle.

Building and operating an application under a DevOps framework:
1. Uses repeatable processes

- all steps are recorded for re-use
2. Tests everything

- shows if you’ve built it right, at each step

 FINAL
 Exemplar DevSecOps

© 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED. 5
Approved for public release. Distribution unlimited PR_23-02103-1. DevSecOps Best Practices Guide

3. Automates everything

- triggers the building and testing of as many steps as possible
4. Uses trusted materials (e.g., hardware, software, source code) and teams

- the right materials and people to do the building and operating
5. Uses metrics to improve

- measures to determine if the application operates properly during its production phase
These qualities are important to ensure consistency, reliability, and efficiency in how a business
unit build and operates an application.

3.2 Top Qualities of an Exemplar DevSecOps Framework
Security adds to the DevOps framework by:

1. Providing repeatable and re-usable processes to ensure security is built-in to the
application

2. Providing repeatable tests to ensure the application is built securely, at each step
3. Automating as many security tests as possible
4. Trusting the materials and staff required to build and operate the application, from a

security perspective
5. Providing metrics to know whether security is maintained each time the application is

built or operated

3.3 Value of Building Security into DevOps
• For the Business Owner:

– Projects will have a streamlined development pipeline for delivering trusted
services to end users

• For the Developer:
– Empower the developer to reduce the security defect debt, Sprint-to-Sprint

• For the ISSO:
– Enable the ISSO to always know the application’s security posture

• For security assessors:
– Use DevOps pipeline to automatically generate security testing data

¨ Security controls and testing are embedded within the development pipeline,
resulting in faster delivery of secure solutions

– Consistency and transparency in the way tests are performed
¨ Security assessors can contribute to a library of the specific tests to be used

– Consistency and consolidation of the results from those tests

 FINAL
 Exemplar DevSecOps

© 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED. 6
Approved for public release. Distribution unlimited PR_23-02103-1. DevSecOps Best Practices Guide

¨ Security assessors can approve the format of results, to promote consistency
across all environments

– Lay a foundation for moving to ongoing authorization decisions

3.4 Benefits of Building Security into DevOps
• For the Developer:

– Higher security assurance, always, of the security of their code as well as the
supporting stack

– Lower security debt (i.e., higher security defect remediation rates)
• For the ISSO:

– Always aware of security status
– Faster security go-live decisions during Sprints
– Timely, clear, concise, consolidated, trusted security data
– Clear understanding of which security controls are either directly supported or

validated as in place
• For the Business Owner:

– Reduced assessment time and cost by using DevOps security data
– Moves the organization toward ongoing authorization
– Use change management auditing data to perform business analytics for non-security

use cases (e.g., Sprint planning efficiency)
• For security assessors:

– Confidence in the security tests and results (by maintaining testing code and testing
standards)

3.5 Exemplar DevSecOps Components

3.5.1 Required Standards
• Secure coding to avoid defects based on the following standards:

– Common Weakness Enumeration (CWE)/SANS Top 25 Most Dangerous Software
Errors1

– Open Web Application Security Project (OWASP) Top 10: The Ten Most Critical
Web Application Security Risks2

• Configuration security settings hardening, such as:
– DISA Security Technical Implementation Guides (STIGs)3

1 https://cwe.mitre.org/top25/
2 https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
3 https://public.cyber.mil/stigs/

 FINAL
 Exemplar DevSecOps

© 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED. 7
Approved for public release. Distribution unlimited PR_23-02103-1. DevSecOps Best Practices Guide

– Center for Internet Security (CIS) Benchmarks4
– Vendor recommendations

• Least functionality
– Standards to minimize the attack surface of an application or its infrastructure by

eliminating unnecessary functions, services, ports, protocols, etc.
• Patching

– Ensuring that all infrastructure is up to date on all security-related patches
• Recommended Metrics

– All high security defects and 90% of all medium or low security defects are resolved
before allowing affected functionality to be deployed to production

– No security defect may carry-over unresolved through more than two Sprints
– Unplanned (unauthorized) changes for any Sprint is less than 5% of planned

(authorized) changes
– Time to receive initial ATO for new systems is 25% less than equivalent new systems

• Triggers for significant changes
– Supports decisions for modified or additional testing based on each Sprint’s initial

security impact analysis

3.5.2 Required Processes
• Development

– Training developers in secure coding
– Secure code review processes
– Configuration management, including review/approval process for standards

¨ Security hardening
¨ Patching
¨ Least functionality

– Sprint-level security oversight for Sprint-to-Sprint go-live decisions

3.5.3 Required Technology
• Change planning project issue tracking (e.g., Jira, Puppet)
• Source code repository (e.g., GitHub, Bitbucket)
• Orchestration (e.g., Jenkins, Ansible, Terraform)
• Automated testing (e.g., InSpec, operational scans)
• Security Information and Event Management (SIEM) tools (e.g., Splunk, ArcSight)
• Analytics

– tracking unauthorized changes during development (change management auditing)

4 https://www.cisecurity.org/cis-benchmarks/

 FINAL
 Exemplar DevSecOps

© 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED. 8
Approved for public release. Distribution unlimited PR_23-02103-1. DevSecOps Best Practices Guide

– application audit log trigger during operation to detect anomalies to adapt to and plan
for the next application build

3.5.4 Authorized Pipeline/Process Fidelity
To meet the goals, objectives, and qualities of the above exemplar DevSecOps framework, the
DevSecOps pipeline shall be required to meet an acceptable level of reliability and
trustworthiness. The crucial goal for the pipeline is to produce a secure application while
generating the necessary security data required to maintain authorization initially, and at the end
of each Sprint. Table 1 illustrates a maturity checklist for business owners. For security in
DevOps to work for production changes, the organization should approve DevSecOps pipelines
and processes complying with this checklist:

• Note: This is a checklist to include Security into DevOps pipelines/processes. The
prerequisite for compliance with this checklist is a DevOps environment with a fully
automated CI/CD pipeline, and no manual user interaction beyond committing software into
the repository.

• Primary Security Goal(s): Maintain security debt at a consistent level, Sprint to Sprint, by
enabling developers and ISSOs to verify security and compliance early and often during each
Sprint. Automation and standardization of this security data is essential.

 FINAL
 Exemplar DevSecOps

© 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED. 9
Approved for public release. Distribution unlimited PR_23-02103-1. DevSecOps Best Practices Guide

Table 1 – DevSecOps Pipeline/Process Checklist
1. Does the pipeline automatically validate, at each create and configure for each build,

security configuration settings compliance of underlying application stack components?
Evaluates supporting cloud, network, operating system, database, app-server and web-server
components’ configurations against STIGs, CIS Benchmarks, and Common Configuration
Enumeration (CCE) compliance.

2. Does the pipeline automatically validate, at each create and configure for each build,
security vulnerability levels of underlying application stack components?
Assesses software patch levels and Common Vulnerabilities and Exposures [CVE]
compliance.

3. Does the pipeline automatically validate, at each create and configure for each build, least
functionality of underlying application stack components?
Limits services, ports, and protocols for application stack to function, compliant with
National Institutes of Standards and Technology Special Publication (NIST SP) 800-53
Security Control for Configuration Management: CM-7 Least Functionality requirements.

4. Does the pipeline automatically perform static code analysis, at each commit, against an
application’s source code?
Analyzes at least 95% of the lines of code (95% code coverage) and perform linting checks
for security issues against, at a minimum, SANS Top 25 CWE compliance.

5. Does the pipeline automatically perform dynamic code analysis, at each create and
configure for each build, against an application’s compiled/running code?
Assesses code security against, at a minimum, OWASP Top 10 CWEs.

6. Does the pipeline automatically generate all the above security data in a standard data format
for machine-readability, assigning severity levels to each security test result (high, medium,
low) and mapping all security test results to NIST SP 800-53 security controls?
An example format is the MITRE-defined Heimdall Data Format, based on the InSpec JSON
output reporter schema including, at a minimum, these labels: title, description, check text,
fix text, relevant NIST SP 800-53 tags, and impact level for each defect.

7. Does the pipeline automatically track and compare planned versus executed changes, to
prove that planned changes, and *only* the planned changes, were implemented during a
Sprint?

8. Do developers and ISSOs certify that all high security defects and 90% of all medium or low
security defects are resolved before allowing affected functionality to be deployed to
production?

9. Do developers and ISSOs assure that no security defect may carry-over unresolved through
more than two Sprints?

10. Are unplanned (unauthorized) changes for any Sprint less than 5% of planned (authorized)
changes?

 FINAL
 Exemplar DevSecOps

© 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED. 10
Approved for public release. Distribution unlimited PR_23-02103-1. DevSecOps Best Practices Guide

3.5.4.1 DevSecOps Checklist Crosswalk: Sprint Days 1-2
The ISSO works with Developers and DevOps team to:

• Identify all proposed functional changes (e.g., in project issue tracker). [Check #7]
• Identify additional security testing required, for example, new/changed:

– Code to add to scope of static code analysis tests. [Check #4]
– APIs, web forms, web pages to add to scope of dynamic analysis tests. [Check #5]
– Cloud, network, operating system, database, app-server and web-server components

to add to scope of security configuration setting, patchable vulnerability, and least
functionality tests. [Checks #1, #2, #3]

• Document the above in a draft Sprint Security Impact Analysis (SIA). [Check #7]

3.5.4.2 DevSecOps Checklist Crosswalk: Sprint Days 3-8
Developers use the DevOps pipeline to help:

• At each commit: automatically perform static code analysis against application source
code. [Check #4]

• At each create and configure for each build, automatically validate:
– security configuration settings compliance, [Check #1]
– security vulnerability levels, and [Check #2]
– least functionality of underlying application stack components [Check #3]

• At each create and configure for each build: automatically perform dynamic code
analysis, against application compiled/running code. [Check #5]

• Resolve all high security defects and 90% of all medium or low security defects detected
by the pipeline during the Sprint. [Check #8]

3.5.4.3 DevSecOps Checklist Crosswalk: Sprint Days 9-10
• The ISSO works with the Developers to review logs from the DevOps pipeline:

– To compare executed changes to the planned changes documented in the Draft SIA
and verify that planned changes, and *only* the planned changes, were implemented
during a Sprint. [Check #7]

– If the unplanned changes were not covered by security testing, the ISSO recommends
the affected functionality be held back from production deployment until security
testing can be performed. [Check #7]

– The ISSO and Developers work to ensure that unplanned (unauthorized) changes for
any Sprint is less than 5% of planned (authorized) changes. [Check #10]

• The ISSO reviews final-run security testing results to verify that all high security defects
and 90% of all medium or low security defects are resolved before allowing affected
functionality to be deployed to production. [Check #8]

 FINAL
 Exemplar DevSecOps

© 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED. 11
Approved for public release. Distribution unlimited PR_23-02103-1. DevSecOps Best Practices Guide

• Developers and ISSOs assure that no security defect may carry-over unresolved through
more than 2 Sprints. [Check #9]

 FINAL
 DevSecOps Best Practices

© 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED. 12
Approved for public release. Distribution unlimited PR_23-02103-1. DevSecOps Best Practices Guide

4. DevSecOps Best Practices
The following sections discuss each best practice area in support of achieving and maintaining a
DevSecOps pipeline, process, and technologies.

4.1 Current DevSecOps Best Practice Focus Areas
An underlying goal of DevSecOps (i.e., building security into DevOps) is preventing vulnerable
applications from reaching production, Sprint to Sprint. However, faster deployments that are
also part of DevOps, while appealing, can also lead to the deployments of vulnerable
applications, leading to higher risk of unauthorized access to mission data. For the ISSO, it is a
tremendous challenge to track changes and weigh security at the end of each Sprint. For the
developer, it is also a challenge to receive timely, concise security defect information each time
they commit and build during a Sprint. The ISSO and developer need to be able to make an
informed decision at the end of each Sprint to recommend a “security go-live,” having the
confidence to know that the application about to be deployed is secure. To do this, they need
timely security data, of various types and prepared in specific ways.
The data needed by the ISSO and developer can be grouped into 3 basic types:

1. “Is it secure?” – data at all levels of the application stack proving that no high impact
security defects remain, about 90% of all medium or low security defects have been
resolved, and each security defect is mapped to the relevant NIST SP 800-53 security
control (for context), across the following areas:

- Secure Configuration Settings (i.e., STIG or CIS Benchmarks against all
supporting cloud, network, operating system, database, app-server, web-server
components, checking for CCE defects)

- Vulnerability Scanning (i.e., Patch Levels, checking for CVE defects)
- Least Functionality (limit services, ports, and protocols only for application to

function, NIST SP 800-53 CM-7 Least Functionality defects)
- Static Code Analysis (i.e., against application source code, checking for CWE

defects)
- Dynamic Code Analysis (i.e., against application compiled/running code,

checking for CWE defects)
2. “How is it secure?” – data to supplement the System Security Plan to reflect the latest

technical security system design.
3. “What has changed during this Sprint?” – data that proves that the planned changes,

and *only* the planned changes, were implemented during the Sprint.

 FINAL
 DevSecOps Best Practices

© 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED. 13
Approved for public release. Distribution unlimited PR_23-02103-1. DevSecOps Best Practices Guide

Figure 4-1 Security Data Needed by the ISSO and Developer each Sprint

The current DevSecOps best practice focus areas support the following user stories:

Figure 4-2 User Stories Supported by Current DevSecOps Best Practice Areas

How can all this data possibly be provided every two weeks? Fortunately, DevOps pipelines
embrace automation. Likewise, to provide timely data to developers and ISSOs, security must
also embrace automation within the pipeline. The following figure illustrates the tests to be
called by the pipeline to generate this security data automatically:

Lo
gs

Commit Job

Lo
gs

Lo
gs

Change
Management

Auditing

Lo
gs

Create/
Configure

Commit Build Unit Test Deploy Test ProductionPlan

Orchestration
Server used to

Create,
Configure, and

Validate

Cloud Services

Network Components

Operating Systems

Containers

Database

Application Server

Web Server

Application Code

What’s Changed?
(Architecture Changes for the SIA*)SIEM Tools

Source
Code

Repository

Project Issue
Tracking

Tool

How is it Secure?
(Artifacts for the SSP*)

* SSP – System Security Plan Documentation Suite
SIA – Security Impact Analysis, required for each sprint

Is it Secure?

What’s Changed?
(Architecture Changes for the SIA*)

User Story / Pain Point:
As a DevOps/Agile developer: Best Practice Area

… it is cheaper and easier to fix security defects early in the development
process. I need tools that are integrated into my CI/CD pipeline to help me
assess and correct security defects on-demand, as I build, iteratively: to
build, get immediate security defect feedback, determine root-cause,
correct, and re-build many times a day…

Security Validation as Code
(Is it secure?)

… and automatically document the as-built security in my system for my
ISSO…

Security Documentation as
Code

(How is it secure?)

… and I need to account for all of my changes through the pipeline before
requesting a security go-live decision for my system…

Change Management Auditing
(What changed during this sprint?)

 FINAL
 DevSecOps Best Practices

© 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED. 14
Approved for public release. Distribution unlimited PR_23-02103-1. DevSecOps Best Practices Guide

Figure 4-3 Automated Security Data needed from the DevOps Pipeline

Some Application teams have embraced the Gartner “infinity loop” DevOps cycle5 as a model
for how teams should conduct development and operation of applications. The figure below
illustrates how the current best practice focus areas support this model:

Figure 4-4 Current Best Practice Area Support for DevSecOps “Infinity Loop”

4.1.1 Security Validation as Code Best Practice
The Security Validation as Code focus area supports the user story for “Is it secure?”:

5 Original “Infinity Loop” Graphic Source: Gartner - DevSecOps

Cloud Services

Network Components

Operating Systems

Containers

Database

Application Server

Web Server

Static and Dynamic
Code Analysis

Vulnerability Scanning
(up-to-date packages/patches)

Least Functionality Checks
(no extra services or ports)

Security
Data

Mapped
to

NIST SP
800-53

Controls

Secure Configuration Settings
(e.g., STIG, CIS benchmarks)

Trusted, known tests, tailored to organizational requirements, results mapped NIST SP 800-53 controls, timely: at each code and build

SE
CU

RI
TY

 D
AT

A

What
changed
based on
Pipeline

Logs

Build Tests (Called by Pipeline Itself!) Approve Deploy

(The DevOps 2-week Agile “sprint” Deployment Pipeline)

Application Code

Code

ü No high
impact
security
defects

ü 90% of all
remaining
security
defects
resolved

ü Validate
approved
changes

ISSO

Developer

Security
go-live

approval
every
sprint!

How is it Secure?
(Artifacts for the SSP*)

Is it Secure?

Lo
gs

Commit Job

Lo
gs

Lo
gs

Change
Management

Auditing

Lo
gs

Create/
Configure

Commit Build Unit Test Deploy Test ProductionPlan

Orchestration
Server used to

Create,
Configure, and

Validate

Cloud Services

Network Components

Operating Systems

Containers

Database

Application Server

Web Server

Application Code

What’s Changed?
(Architecture Changes for the SIA*)SIEM Tools

Source
Code

Repository

Project Issue
Tracking

Tool

What’s Changed?
(Architecture Changes for the SIA*)

Security Validation as Code

Security Documentation as Code

Change Management Auditing

 FINAL
 DevSecOps Best Practices

© 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED. 15
Approved for public release. Distribution unlimited PR_23-02103-1. DevSecOps Best Practices Guide

“As a DevOps/Agile developer, it is cheaper and easier to fix security defects early in the
development process. I need tools that are integrated into my CI/CD pipeline to help me assess
and correct security defects on-demand, as I build, iteratively: to build, get immediate security
defect feedback, determine root-cause, correct, and re-build many times a day.”

Figure 4-5 Shifting Security Testing “Left” to Fix Security Defect as Early as Possible

This focus area uses the pipeline to directly perform security validation tests. The security
defects produced by these tests need to either already map their defect results to NIST SP 800-53
security controls or provide a category for the security defect that can easily be mapped to NIST
SP 800-53 security controls automatically.

Figure 4-6 Technology Approach for Security Validation as Code Best Practice Area

Vulnerability Scanning
Configuration Settings Compliance

Least Functionality

Commit Build Unit Test Deploy Test Prod Deploy

Continuous Integration

Continuous Delivery

Continuous Deployment

Approval

Approval

“Shifting Security to the Left”
Earlier detection, cheaper to fix.

Reduced analysis time for root
cause of security defects

Static Dynamic

Cloud Services

Network Components

Operating Systems

Containers

Database

Application Server

Web Server

Static and Dynamic
Code Analysis

Vulnerability Scanning
(up-to-date packages/patches)

Least Functionality Checks
(no extra services or ports)

Security
Data

Mapped
to

NIST SP
800-53

Controls

Secure Configuration Settings
(e.g., STIG, CIS benchmarks)

Trusted, known tests, tailored to organizational requirements, results mapped NIST SP 800-53 controls, timely: at each code and build

SE
CU

RI
TY

 D
AT

A

What
changed
based on
Pipeline

Logs

Build Tests (Called by Pipeline Itself!) Approve Deploy

(The DevOps 2-week Agile “sprint” Deployment Pipeline)

Application Code

Code

ü No high
impact
security
defects

ü 90% of all
remaining
security
defects
resolved

ü Validate
approved
changes

ISSO

Developer

Security
go-live

approval
every
sprint!

How is it Secure?
(Artifacts for the SSP*)

Is it Secure?

Lo
gs

Commit Job

Lo
gs

Lo
gs

Change
Management

Auditing

Lo
gs

Create/
Configure

Commit Build Unit Test Deploy Test ProductionPlan

Orchestration
Server used to

Create,
Configure, and

Validate

Cloud Services

Network Components

Operating Systems

Containers

Database

Application Server

Web Server

Application Code

What’s Changed?
(Architecture Changes for the SIA*)SIEM Tools

Source
Code

Repository

Project Issue
Tracking

Tool

What’s Changed?
(Architecture Changes for the SIA*)

Mapping Tools

Data Viewing ToolsTesting Content Testing Tools

Answers: Is it Secure?
“Security Validation as Code”

Library
of Tests

e.g., Heimdall
e.g., InSpec

Source
Code

Repository

 FINAL
 DevSecOps Best Practices

© 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED. 16
Approved for public release. Distribution unlimited PR_23-02103-1. DevSecOps Best Practices Guide

4.1.1.1 Testing Tools
To perform least functionality, patching, and configuration setting checks against the underlying
infrastructure of cloud, network, operating system, container, database, application, and web
server technologies supporting an application; an example of an accessible, open-source tool
DevOps teams may choose is InSpec6, a testing framework that can be incorporated into the
existing testing harness of a pipeline’s orchestration server. InSpec is well-suited to performing
concrete sets of tests against known infrastructure components supporting an application.7

Figure 4-7 InSpec Open Source Testing Framework as an Option for Security Validation as Code

Best Practice Area

6 https://www.inspec.io/
7 At this time InSpec isn’t very well suited for automating static and dynamic analysis tests. Static and dynamic

analysis tools are more complex in their modeling and analysis of custom application code. We discuss how a
DevOps pipeline can handle output from common static and dynamic tools in section 4.1.1.3.

§ Open Source – a growing community including NGA, NRO, USGCB, CMS, AOC, DISA

§ Built to integrate with any orchestration technology or testing harness

§ Small footprint – built for speed and simplicity

§ Intuitive validation language based on Ruby

§ Customizable with overlays and attribute exceptions

§ Developers and Security auditors can see the exact tests within the profile code

§ Human- and machine-readable output allows for desktop use and scalability to enterprise
– Immediate feedback for the developer at their desktop

– Dashboard integration for SIEM* or other tools for Sprint teams

– Enterprise viewable by security auditors

§ Tests and Results are tagged/linked to NIST SP 800-53 controls

§ Can be used against any part of the application stack or infrastructure:
– e.g., RHEL, NGINX, PostgreSQL, Docker, Apache, MySQL, Hadoop, AWS, etc.

Testing Tools

* SIEM: Security Information and Event Management

 FINAL
 DevSecOps Best Practices

© 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED. 17
Approved for public release. Distribution unlimited PR_23-02103-1. DevSecOps Best Practices Guide

Figure 4-8 Open Source InSpec-based Option for Secure Configuration, Vulnerability, and Least

Functionality Validation Checks

4.1.1.2 Testing Content (Code), using InSpec as an Open Source Example
InSpec relies on testing content in the form of InSpec “profiles” to perform validation. A library
of approved profiles is expected to be available for all DevOps teams to use within their
pipelines to validate the security of their underlying infrastructure, as often as needed, to reduce
and maintain security debt. The library is shown below:

Figure 4-9 Testing Content for Security Validation as Code: Current InSpec Profiles

NIST SP 800-53 tagging: When developing InSpec profiles, ensure that each test has an
associated NIST SP 800-53 tag, for example:

Commit Job
Create/Configure

Validate

Commit Build Unit Test Deploy Test ProductionPlan

Orchestration
Server used to

Create, Configure,
and Validate

Security Validation
as Code:

Cloud Services

Network Components

Operating Systems

Containers

Database

Application Server

Web Server

ISSO

Developer

Security
go-live

approval
every
sprint!

Validate

Least Functionality Checks
(no extra services or ports)

Vulnerability Scanning
(up-to-date packages/patches)

Secure Configuration Settings
(e.g., STIG, CIS benchmarks)

Security
Data

Mapped
to

NIST SP
800-53

Controls

Is it Secure?

Source
Code

Repository

Project Issue
Tracking

Tool

Testing Content

https://mitre-saf.netlify.com/validation

https://saf.mitre.org/#/validate

 FINAL
 DevSecOps Best Practices

© 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED. 18
Approved for public release. Distribution unlimited PR_23-02103-1. DevSecOps Best Practices Guide

Figure 4-10 NIST SP 800-53 Security Control Context for InSpec Tests

When an InSpec profile is run against a target system, the security data output includes this tag
as well as all other tags, description information and the code used for each test.

4.1.1.3 Data Mapping Tools to Adapt Data from Static and Dynamic Code Analysis Tools
To perform application code security validation, DevOps teams are adopting various static and
dynamic code analysis tools. To help DevOps teams manage data from these tools, mapping
algorithms and tools should be developed to ensure that the security defects found by commonly
used static and dynamic code analysis tools are also mapped8 to NIST SP 800-53 controls, and
machine-readable and viewable in the same fashion other types of security data, such as InSpec
output. Static code analysis tools are typically expected to be called by the source code
repository upon each major commit, and dynamic code analysis tools called by the existing
testing harness of a pipeline’s orchestration server.

8 An open source demonstration of a static and dynamic mapping tool is: https://github.com/mitre/heimdall_tools

control "V-71921" do
title "The shadow file must be configured to store only encrypted

representations of passwords."
desc "Passwords need to be protected at all times, and encryption is the

standard method for protecting passwords. If passwords are not encrypted, they
can be plainly read (i.e., clear text) and easily compromised. Passwords
encrypted with a weak algorithm are no more protected than if they are kept in
plain text."
impact 0.5
tag "gtitle": "SRG-OS-000073-GPOS-00041"
tag "gid": "V-71921"
tag "rid": "SV-86545r1_rule"
tag "stig_id": "RHEL-07-010210"
tag "cci": ["CCI-000196"]
tag "documentable": false

 tag "nist": ["IA-5 (1) (c)", "Rev_4"]
tag "check": "Verify the system's shadow file is configured to store only

encrypted representations of passwords. The strength of encryption that must be
used to hash passwords for all accounts is SHA512.

Check that the system is configured to create SHA512 hashed passwords with the
following command:

grep -i encrypt /etc/login.defs
ENCRYPT_METHOD SHA512
…

IA-5(1),
NIST SP 800-53’s Security Control for
Identification and Authentication -
Password-based Authentication

 FINAL
 DevSecOps Best Practices

© 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED. 19
Approved for public release. Distribution unlimited PR_23-02103-1. DevSecOps Best Practices Guide

Figure 4-11 Data Mapping Tools for Static & Dynamic Code Analysis Tool Output

4.1.1.4 Data Standardization and Viewing Tools
In addition to ensuring the pipeline generates timely security data, DevOps teams also need the
data to be prepared in specific, consistent ways, to meet several goals:

• Machine-readability – to ensure that the data can be moved and transformed as needed
• Security control context – security defects tagged to NIST SP 800-53 controls, to

provide a common point of reference for the security context of any defect
• Transparency – shows not only the test code, but the reasoning behind it, all details of

the security defects from the original testing profile or tool, and the explanation of how to
fix the defect

• Flexibility – allows viewing at the developer’s desktop from the command-line, or using
a graphical user interface (GUI) to view on the developer’s laptop, DevOps team server,
or data center server

• Consistency – allows for a familiar view for a wide audience: developers, ISSOs, and
Business Owners

Machine-readability is important to allow security data to be transported to, easily read by, and
presented on a customer’s preferred dashboard.
In addition to adopting a tool such as InSpec and developing mapping tools discussed earlier,
DevOps teams should standardize on a tool such as the open-source Heimdall9 to view and
analyze the machine-readable data produced by InSpec and mapping tools, and use security

9 https://mitre.github.io/heimdall-lite/#/, https://github.com/mitre/heimdall

Commit Job

Validate

Commit Build Unit Test Deploy Test ProductionPlan

Security Validation
as Code

Static and Dynamic
Code Analysis

Application Code

Compile/Configure

Orchestration
Server used to

Create, Configure,
and Validate ISSO

Developer

Security
go-live

approval
every
sprint!

Security
Data

Mapped
to

NIST SP
800-53

Controls

Validate
Dynamic Analysis

Security Tools
e.g., OWASP ZAP

Static Analysis
Security Tools

e.g., SonarQube

Validate

Mapping Tools

Is it Secure?

Source
Code

Repository

Project Issue
Tracking

Tool

 FINAL
 DevSecOps Best Practices

© 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED. 20
Approved for public release. Distribution unlimited PR_23-02103-1. DevSecOps Best Practices Guide

information and event management (SIEM) tools to move this data for team and enterprise (e.g.,
data center) viewing.
This helps the pipeline automatically generate all security data in a standard format such as the
open-source Heimdall Data Format for machine-readability, assigning severity levels to each
security test result (high, medium, low) and mapping all security test results to NIST SP 800-53
security controls.
The output is standardized in a json format including a title, description, check text, fix text,
relevant NIST SP 800-53 tag and impact level for each security defect.

Figure 4-12 Example Data Viewing Tools – using Heimdall + SIEM Tools

DevOps teams should make should use technologies to make this data as accessible as possible
for different use cases and stakeholders. This will allow each stakeholder to analyze and address
security defects and risks as soon as possible throughout the lifecycle of applications.

• For example, the open-source Heimdall-lite10 provides functionality for viewing data
from HDF JSON files. It is intended as a standalone single-file JavaScript html page that
can be loaded into a browser on a developer’s own workstation. Files can be uploaded
through the browser graphic user interface (GUI), from storage such as S3, or retrieved
from SIEM sources such as Splunk.

• As another example, the open-source Heimdall Server11 is a full standalone server
version, providing storage for uploaded files, role-based access controls (RBAC),
comparing of different JSON files, and trending of security debt over time. It is intended
to be used as a local DevOps team server to analyze trends during Sprints. In addition to

10 https://mitre.github.io/heimdall-lite/#/
11 https://github.com/mitre/heimdall

Job

Validate Developer

Security Data Mapped to NIST SP 800-53 Security Controls

Dynamic Analysis
Security Tools

e.g., OWASP ZAP

Static Analysis
Security Tools

e.g., SonarQube

Validate

Orchestration Server used to
Create, Configure, and Validate

Mapping Tools

DevOps
Team

Business
Owner

ISSO

Data Viewing Tools

InSpec Profile Library

SIEM Tools

Source
Code

Repository

Upload via GUI

… or Retrieve from SIEM

Is it Secure?

Heimdall-lite (local view)

Upload via GUI or API Is it Secure?

Heimdall Server
(team/enterprise view)

Machine-
readable

JSON
Files

Retrieve
from storage

 FINAL
 DevSecOps Best Practices

© 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED. 21
Approved for public release. Distribution unlimited PR_23-02103-1. DevSecOps Best Practices Guide

the upload methods demonstrated by Heimdall-lite, Heimdall Server allows upload via an
API as well.

Figure 4-13 Example Data Viewing with Heimdall – Summary and Graphical Views

 FINAL
 DevSecOps Best Practices

© 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED. 22
Approved for public release. Distribution unlimited PR_23-02103-1. DevSecOps Best Practices Guide

Figure 4-14 Example Data Viewing with Heimdall – Test Results List View

Figure 4-15 Example Data Viewing with Heimdall – Details View

 FINAL
 DevSecOps Best Practices

© 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED. 23
Approved for public release. Distribution unlimited PR_23-02103-1. DevSecOps Best Practices Guide

Figure 4-16 Example Data Viewing with Heimdall – InSpec Testing Code View

 FINAL
 DevSecOps Best Practices

© 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED. 24
Approved for public release. Distribution unlimited PR_23-02103-1. DevSecOps Best Practices Guide

Figure 4-17 Example Data Viewing with Heimdall – Static Code Analysis Tool Output View

4.1.2 Security Documentation as Code Best Practice
The Security Documentation as Code focus area supports the user story for “How is it secure?”:
“As a DevOps/Agile developer, maintaining security documentation is a challenge. In addition to
validating security, I need tools that are integrated into my CI/CD pipeline to help me
automatically document the as-built security in my system for my ISSO, Sprint-to-Sprint.”
This focus area uses the pipeline to directly perform security validation tests. For example,
InSpec profiles include documentation for each security test they perform, and hence provide the
context of each successful security check they perform. Each security check is also linked to a
NIST SP 800-53 control. A DevOps team can use this data, grouped by security control, to help
populate or supplement private implementation details in the SSP.
For example, the Heimdall viewer provides a different view of the JSON data output for SSP-
ready use:

 FINAL
 DevSecOps Best Practices

© 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED. 25
Approved for public release. Distribution unlimited PR_23-02103-1. DevSecOps Best Practices Guide

Figure 4-18 Example of using InSpec Profile output for Security Documentation

This view can be saved as an addendum for the ISSO to supplement the SSP documentation
uploaded into the FISMA system of record.
DevOps Teams should also incorporate the NIST Open Security Controls Assessment Language
(OSCAL)12 standards into all aspects of security testing to support population and maintenance
of SSP documentation:

“NIST, in collaboration with industry, is developing the Open Security Controls
Assessment Language (OSCAL). OSCAL is a set of formats expressed in XML, JSON, and
YAML. These formats provide machine-readable representations of control catalogs,
control baselines, system security plans, and assessment plans and results.”

4.1.3 Change Management Auditing Best Practice
The Change Management Auditing focus area supports the user story for “What has changed
during this Sprint?”:

12 https://pages.nist.gov/OSCAL/

 FINAL
 DevSecOps Best Practices

© 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED. 26
Approved for public release. Distribution unlimited PR_23-02103-1. DevSecOps Best Practices Guide

“As a DevOps/Agile developer, I need to account for all my changes through the pipeline before
requesting a security go-live decision for my system, Sprint-to-Sprint.”
This focus area uses data from the pipeline itself, to correlate items from project issues to source
code repository commits to orchestration server builds. Anything that can’t be traced back to a
planned project issue is flagged as an unauthorized change for discussion with the ISSO during
the Sprint.
At the beginning of each Sprint, the intent is for the ISSO to develop an initial Security Impact
Analysis based on planned change for the Sprint, to foresee significant security testing changes
in a Sprint. Near the end of the Sprint, this change management auditing best practice is intended
to identify any unauthorized changes implemented during the Sprint.
For example, a SIEM tool could be used to support the collection of logs from pipeline
components and to correlate the events across these components:

Figure 4-19 Change Management Auditing Best Practice Area supported by an SIEM tool

A dashboard could then be used to brings logs from each component of the pipeline together for
the developer and ISSO to review.

In addition, the DevOps team should follow these code review recommendations:
Implement Project Code Standards for DevOps:

1. Employ code quality standards (for measuring code quality)
a. Linting – used for checking for code clarity and neatness in code
b. Code Coverage to 90-95% – unit/functional testing to exercise 90-95% of all

functions
c. Complexity Reduction – to increase maintainability and modularity, helps

developers fix multiple instances of security problems with fewer corrections to
code.

Lo
gs

Commit Job

Lo
gs

Lo
gs

Change
Management

Auditing

Lo
gs

Create/
Configure

Commit Build Unit Test Deploy Test ProductionPlan

Orchestration
Server used to

Create,
Configure, and

Validate

Cloud Services

Network Components

Operating Systems

Containers

Database

Application Server

Web Server

Application Code

What’s Changed?
(Architecture Changes for the SIA*)SIEM Tools

Source
Code

Repository

Project Issue
Tracking

Tool

* SIA – Security Impact Analysis, required for each sprint

 FINAL
 DevSecOps Best Practices

© 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED. 27
Approved for public release. Distribution unlimited PR_23-02103-1. DevSecOps Best Practices Guide

d. Static Code review (security review)
i. Seek a tool that attempts to check as many applicable CWE types from

SANS Top 25.
ii. Note however that few tools reach much higher than a 30% true positive

rate.13
iii. Running tools from different sources can help identify true positives.

e. Peer code review by team members (informal, analogous to independent release-
based review)

2. Integrate all tools into the CI/CD pipeline – Automate to save time! Spend time
evaluating the results rather than running the tool manually.

3. Code quality tools are selected as appropriate for the entire code base used for the project
(e.g., node.js (JavaScript), ruby)14

Employ a Good Workflow:
1. Use branch/merge pull request model that rebases against the main line:

à Upon every merge of a pull request into the main line, run code quality tools.
2. In the source code repository: All code commits must be tagged/related to a planned

project issue ticket
3. In the project issue tracker: All planned project issue tickets for coding/recoding a

function must be tagged with applicable security controls, with the help of the on-staff
security engineer:

a. Tag (identify) the security controls the function supports for the application - e.g.,
the application’s authentication service directly supports (performs) AC-3 (Access
Control Enforcement)

b. Tag security controls that support the security of the function itself (e.g., the
application’s authentication service is protected by file permissions, encryption,
employed with infrastructure components)

4. 1, 2, and 3 together provide a way to map pull requests to controls, to support security-
based change control tracking.

4.1.4 Control Coverage for Current Best Practices Focus Areas
For Federal systems, relating any security defect or findings to a NIST SP 800-53 security
control is vital to provide a common point of reference across all stakeholders making security
decisions. The current best practices on security validation, documentation, and change
management auditing validate or support several security controls, including the following:

13 https://rawgit.com/OWASP/Benchmark/master/scorecard/OWASP_Benchmark_Home.html
14 Sonarqube plugin for javascript exists - https://docs.sonarqube.org/display/PLUG/SonarJS

 FINAL
 DevSecOps Best Practices

© 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED. 28
Approved for public release. Distribution unlimited PR_23-02103-1. DevSecOps Best Practices Guide

Figure 4-20 NIST SP 800-53 Security Control Coverage when Building Security into DevOps

Note: This figure only covers 4 types of InSpec profiles. Appendix A details the control coverage
for these 4 types of representative profiles. Appendices B and C map controls to key standards
used by static and dynamic code analysis tools.

4.2 Future Best Practice Focus Areas

4.2.1 Reporting Best Practices
The DevOps teams should work with all stakeholders to develop and refine best practice
reporting and integration requirements to comply with stakeholder use of security data from the
DevSecOps lifecycle. Stakeholders include developers, ISSOs, security assessors, SOC staff, and
those responsible for FISMA reporting into the organization’s system of record.
Developer and ISSO day-to-day use of security data produced by the DevOps pipeline has been
covered by the current focus areas discussed in Section 4.1.

4.2.1.1 ISSO Reporting
The ISSO is also responsible for tracking the security defects that cannot be resolved before the
end of each Sprint. The standard method for populating any kind of security finding, be it from
InSpec, static or dynamic code analysis tools, penetration testing, or external auditors, is to
record these in some type of Compliance Assessment/Audit Tracking (CAAT) spreadsheet. For
example, Heimdall provides a means for the ISSO to generate this spreadsheet:

Access Control
Control Number Cloud OS Web DB
AC-02 ü
AC-02(01) ü
AC-02(04) ü
AC-03 ü ü ü
AC-06 ü ü
AC-06(07) ü
AC-06(09) ü ü
AC-06(10) ü
AC-07 ü
AC-08 ü
AC-10 ü ü
AC-11 ü
AC-12 ü ü
AC-16 ü
AC-17(02) ü
AC-18(01) ü

Audit and Accountability
Control Number Cloud OS Web DB
AU-02 ü
AU-03 ü ü
AU-03(01) ü
AU-03(02) ü
AU-04 ü ü ü
AU-05 ü
AU-05(01) ü ü
AU-05(02) ü
AU-06 ü
AU-06(05) ü
AU-08 ü
AU-08(01) ü
AU-09 ü ü ü
AU-10 ü
AU-12 ü ü ü
AU-12(03) ü

Configuration Management
Control Number Cloud OS Web DB
CM-02 ü
CM-05(01) ü
CM-06 ü ü
CM-07 ü ü ü
CM-07(01) ü
CM-08 ü
CM-08(02) ü
CM-08(03) ü

Identification and Authentication
Control Number Cloud OS Web DB
IA-02 ü ü ü
IA-02(01) ü
IA-02(02) ü
IA-02(11) ü
IA-02(12) ü
IA-03 ü
IA-04 ü ü
IA-05 ü
IA-05(01) ü ü ü
IA-05(02) ü
IA-07 ü
IA-08 ü

Incident Response
Control Number Cloud OS Web DB
IR-07 ü

System and Communications Protection
Control Number Cloud OS Web DB
SC-02 ü
SC-03 ü ü
SC-04 ü
SC-05 ü
SC-07 ü ü
SC-07(05) ü
SC-08 ü ü
SC-08(02) ü
SC-10 ü
SC-12 ü ü
SC-13 ü
SC-23 ü ü
SC-28 ü ü
SC-28(01) ü

System and Information Integrity
Control Number Cloud OS Web DB
SI-02 ü
SI-03 ü
SI-04(02) ü
SI-04(04) ü
SI-04(05) ü
SI-06 ü
SI-07 ü
SI-07(01) ü
SI-07(02) ü
SI-07(05) ü
SI-10 ü
SI-11 ü

Security Validation as Code supports SA-11 – Developer Security Testing and Evaluation

Security Documentation as Code supports SA-5 - Information System Documentation

… for a range of security controls on Cloud (e.g., AWS), OS (e.g., Red Hat), Web (e.g., NGINX), or Database (e.g., PostgreSQL):

Change Management Auditing supports

CM-3 - Configuration Change Control

SA-10 - Developer Configuration Management

CM-4 - Security Impact Analysis

CM-5(2) - Review System Changes

IR-6(1) - Automated (Incident) Reporting

 FINAL
 DevSecOps Best Practices

© 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED. 29
Approved for public release. Distribution unlimited PR_23-02103-1. DevSecOps Best Practices Guide

Figure 4-21 Example of an ISSO’s Compliance Assessment/Audit Tracking (CAAT) Spreadsheet,

Generated by Open-Source Heimdall tool

4.2.1.2 Security Control Assessment Reporting
Security Control Assessment teams perform security assessments for the initial authorization of a
system and ongoing authorization after the initial authorization.

Figure 4-22 Security Control Assessment Team use of DevSecOps Security Data for ATO Processes

A proposed best practice is for these teams is to review security data coming from the DevOps
environments, to supplement or reduce the time-consuming process of introducing external
security tools to perform assessments. Open source examples include using Heimdall (discussed
in 4.1.1.4) or CAAT (discussed in 4.2.1.1) options.

Authorized DevSecOps Pipeline

Security Data

Initial ATO

Sprint 1
Go-No Go
Decision

Sprint 2
Go-No Go
Decision

Sprint N
Go-No Go
Decision

Security Data Security Data Security Data

Maintains ATO
Going Forward
after Initial ATO

 FINAL
 DevSecOps Best Practices

© 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED. 30
Approved for public release. Distribution unlimited PR_23-02103-1. DevSecOps Best Practices Guide

4.2.1.3 SOC Reporting
The SOC team monitors security across the enterprise, performing threat modeling and alerting
system developers and maintainers when threats are detected targeting vulnerable systems. The
SOC needs to be aware of the security vulnerabilities of systems. A proposed best practice for
the SOC staff to review security data from DevOps environments is by using an enterprise level
viewing tool, such as the Heimdall Server enterprise-level viewing capability (discussed in
4.1.1.4).

4.2.2 Operational Analytics Best Practices
The DevOps teams should work with all stakeholders to develop a best practice process to
engineer application audit log triggers during development to detect anomalies during operations
and use this data to adapt to and plan for the next application development Sprint:

Figure 4-23 Operational Analytics Best Practice Support for DevSecOps “Infinity Loop”

The intent for this best practice is for DevOps teams to work with the business owner to define
unusual business-application usage patterns to base security event triggers, leveraging web, API,
and application server logs. Unusual usage patterns are highly dependent on the specific business
workflow and use cases for their application. These patterns could be unusual transactions,
deletions, downloads of unusual volumes or types data given a user’s defined role for the
application, etc. Custom code may be required to generate many of these business application-
specific events. The intent is for the DevOps team to collect these audit logs and configure an
SIEM to detect and alert the DevOps team of these anomalies.

4.2.3 DevSecOps Process Improvement Best Practices
The DevOps teams should work with all stakeholders to describe what to measure and how to
analyze the data to constantly improve the project’s DevSecOps process. It will improve future

Operational Analytics

 FINAL
 DevSecOps Best Practices

© 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED. 31
Approved for public release. Distribution unlimited PR_23-02103-1. DevSecOps Best Practices Guide

builds using metrics and measures of security debt, unauthorized changes during development,
and detection of anomalies during operation:

Figure 4-24 DevSecOps Cycle Improvement Best Practice Support for DevSecOps “Infinity Loop”

Initial proposed metrics include:

• All high security defects and 90% of all medium or low security defects are resolved
before allowing affected functionality to be deployed to production.

• No security defect may carry-over unresolved through more than 2 Sprints.
• The number of unplanned (unauthorized) changes for any Sprint is less than 5% of the

number of planned (authorized) changes.
This best practice should be refined through continued work with internal and external DevOps
teams, including industry best practice research such as the DORA (DevOps Research and
Assessment)15.

15 https://devops-research.com/

DevSecOps Process Improvement (using Metrics)

 FINAL
 NIST SP 800-53 Security Control Coverage Details

© 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED. 32
Approved for public release. Distribution unlimited PR_23-02103-1. DevSecOps Best Practices Guide

Appendix A. NIST SP 800-53 Security Control Coverage Details

Figure 4-25 AWS InSpec Profile – Security Control Coverage

Date:

1 2 2(1) 2(2) 2(3) 2(4) 2(5) 2(9)* 2(10)* 2(11) 2(12) 2(13) 3 3(9)* 4 4(8)* 4(12)* 4(15)* 4(17)* 4(18)* 5 6 6(1) 6(2) 6(3) 6(5) 6(7)* 6(9) 6(10)

7 8 9* 9(1)* 10 11 11(1) 12 14 16* 16(3)* 17 17(1) 17(2) 17(3) 17(4) 17(9) 18 18(1) 18(4) 18(5) 19 19(5) 20 20(1) 20(2) 20(3)* 21 22

Awareness and Training AT 1 2 2(2) 3 4

1 2 2(3) 3 3(1) 3(2) 4 5 5(1) 5(2) 6 6(1) 6(3) 6(5) 6(6) 6(10)* 7 7(1) 7(2)* Assessment Legend:

8 8(1) 9 9(2) 9(3) 9(4) 10 10(1)* 11 12 12(1) 12(3) 16* 16(2)*

1 2 2(1) 2(2) 2(3) 2(6)* 2(7) 3 3(1) 3(2) 3(6)* 4 4(1) 4(2)* 5 5(1) 5(2) 5(3)

6 6(1) 6(2) 7 7(1) 7(2) 7(4) 7(5)* 7(5) 8 8(1) 8(2) 8(3) 8(4) 8(5) 9 10 11

Contingency Planning CP 7 7(1) 7(2) 7(3) 7(4) 8 8(1) 8(2) 8(3) 8(4) 9 9(1) 9(2) 9(3) 9(5) 10 10(2) 10(4)

Identification and
Authentication

IA 1 2 2(1) 2(2) 2(3) 2(4) 2(6)* 2(7)* 2(8) 2(9) 2(11) 2(12) 3 4 4(3)* 5 5(1) 5(2) 5(3) 5(11) 6 7 8 8(1) 8(2) 8(3) 8(4)

Incident Response IR 1 2 2(1) 2(2) 3 3(1)* 3(2) 4 4(1) 4(3)* 4(4) 4(6)* 4(7)* 5 5(1) 6 6(1) 7 7(1) 7(2)* 8 9* 9(1)* 9(2)* 9(3)* 9(4)* 10*

Maintenance MA 1 2 2(2) 3 3(1) 3(2) 3(3) 4 4(1) 4(2) 4(3) 4(6)* 5 5(1) 6

Media Protection MP 1 2 3 4 5 5(3)* 5(4) 6 6(1) 6(2) 6(3) 6(8)* 7 7(1) 8* 8(3)* C-1

Physical and Environmental
Protection

PE 1 2 2(1)* 3 3(1) 4 5 6 6(1) 6(4) 8 8(1) 9 10 11 11(1) 12 13 13(1) 13(2) 13(3) 14 15 15(1) 16 17 18 18(1)*

Planning PL 1 2 2(3) 4 4(1) 8

Personnel Security PS 1 2 3 3(3)* 4 4(2) 5 6 7 8

Risk Assessment RA 1 2 3 5 5(1) 5(2) 5(3)* 5(4) 5(5)

System and Services
Acquisition

SA 1 2 3 4 4(1) 4(2) 4(8)* 4(9) 4(10) 5 8 9 9(2) 9(5)* 10 10(1)* 11 11(2)* 11(5)* 11(8)* 12 13* 15 15(9) 16 17 21* 22*

1 2 3 3(2)* 3(3)* 3(4)* 3(5)* 4 5 7 7(3) 7(4) 7(5) 7(7) 7(8) 7(14)* 7(18) 7(21) 8 8(1) 8(2)*

10 12 12(1) 13 15 15(1) 17 18 19 20 21 22 23 24 28 28(1)* 32* 39 C-1 C-2

1 2 2(1) 2(2) 2(3)* 3 3(1) 3(2) 4 4(1)* 4(2) 4(3)* 4(4) 4(5) 4(14)* 4(16) 4(23)* 4(24)*

5 5(1) 6 6(2)* 7 7(1) 7(2) 7(5) 7(6)* 7(7) 7(14) 8 8(1) 8(2) 10 11 12 16

InSpec ProfileCMS ARS 3.1 Control Coverage WorkSheet Assessment Target: CIS AWS Foundations Benchmark v1.1.0 - 11-29-2016 3/1/2018 Comment:

Control Number(s) (* indicates a non-mandatory control)

Access Control AC

Audit and Accountability AU
Green indicates a covered
control for the assessment

target
Configuration Management CM

System and Communications
Protection

SC

System and Information
Integrity

SI

Control Family

 FINAL
 DevSecOps Best Practices

© 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED. 33
Approved for public release. Distribution unlimited PR_23-02103-1. DevSecOps Best Practices Guide

Figure 4-26 Red Hat InSpec Profile – Security Control Coverage

Date:

1 2 2(1) 2(2) 2(3) 2(4) 2(5) 2(9)* 2(10)* 2(11) 2(12) 2(13) 3 3(9)* 4 4(8)* 4(12)* 4(15)* 4(17)* 4(18)* 5 6 6(1) 6(2) 6(3) 6(5) 6(7)* 6(9) 6(10)

7 8 9* 9(1)* 10 11 11(1) 12 14 16* 16(3)* 17 17(1) 17(2) 17(3) 17(4) 17(9) 18 18(1) 18(4) 18(5) 19 19(5) 20 20(1) 20(2) 20(3)* 21 22

Awareness and Training AT 1 2 2(2) 3 4

1 2 2(3) 3 3(1) 3(2) 4 5 5(1) 5(2) 6 6(1) 6(3) 6(5) 6(6) 6(10)* 7 7(1) 7(2)* Assessment Legend:

8 8(1) 9 9(2) 9(3) 9(4) 10 10(1)* 11 12 12(1) 12(3) 16* 16(2)*

1 2 2(1) 2(2) 2(3) 2(6)* 2(7) 3 3(1) 3(2) 3(6)* 4 4(1) 4(2)* 5 5(1) 5(2) 5(3)

6 6(1) 6(2) 7 7(1) 7(2) 7(4) 7(5)* 7(5) 8 8(1) 8(2) 8(3) 8(4) 8(5) 9 10 11

Contingency Planning CP 7 7(1) 7(2) 7(3) 7(4) 8 8(1) 8(2) 8(3) 8(4) 9 9(1) 9(2) 9(3) 9(5) 10 10(2) 10(4)

Identification and
Authentication

IA 1 2 2(1) 2(2) 2(3) 2(4) 2(6)* 2(7)* 2(8) 2(9) 2(11) 2(12) 3 4 4(3)* 5 5(1) 5(2) 5(3) 5(11) 6 7 8 8(1) 8(2) 8(3) 8(4)

Incident Response IR 1 2 2(1) 2(2) 3 3(1)* 3(2) 4 4(1) 4(3)* 4(4) 4(6)* 4(7)* 5 5(1) 6 6(1) 7 7(1) 7(2)* 8 9* 9(1)* 9(2)* 9(3)* 9(4)* 10*

Maintenance MA 1 2 2(2) 3 3(1) 3(2) 3(3) 4 4(1) 4(2) 4(3) 4(6)* 5 5(1) 6

Media Protection MP 1 2 3 4 5 5(3)* 5(4) 6 6(1) 6(2) 6(3) 6(8)* 7 7(1) 8* 8(3)* C-1

Physical and Environmental
Protection

PE 1 2 2(1)* 3 3(1) 4 5 6 6(1) 6(4) 8 8(1) 9 10 11 11(1) 12 13 13(1) 13(2) 13(3) 14 15 15(1) 16 17 18 18(1)*

Planning PL 1 2 2(3) 4 4(1) 8

Personnel Security PS 1 2 3 3(3)* 4 4(2) 5 6 7 8

Risk Assessment RA 1 2 3 5 5(1) 5(2) 5(3)* 5(4) 5(5)

System and Services
Acquisition

SA 1 2 3 4 4(1) 4(2) 4(8)* 4(9) 4(10) 5 8 9 9(2) 9(5)* 10 10(1)* 11 11(2)* 11(5)* 11(8)* 12 13* 15 15(9) 16 17 21* 22*

1 2 3 3(2)* 3(3)* 3(4)* 3(5)* 4 5 7 7(3) 7(4) 7(5) 7(7) 7(8) 7(14)* 7(18) 7(21) 8 8(1) 8(2)*

10 12 12(1) 13 15 15(1) 17 18 19 20 21 22 23 24 28 28(1)* 32* 39 C-1 C-2

1 2 2(1) 2(2) 2(3)* 3 3(1) 3(2) 4 4(1)* 4(2) 4(3)* 4(4) 4(5) 4(14)* 4(16) 4(23)* 4(24)*

5 5(1) 6 6(2)* 7 7(1) 7(2) 7(5) 7(6)* 7(7) 7(14) 8 8(1) 8(2) 10 11 12 16

Access Control AC

Audit and Accountability AU

System and Communications
Protection

SC

Control Family Control Number(s) (* indicates a non-mandatory control)

3/1/2018 Comment: InSpec ProfileCMS ARS 3.1 Control Coverage WorkSheet Assessment Target: Red Hat Enterprise Linux 7 STIG R3 27 Oct 2017

Configuration Management CM

Green indicates a covered
control for the assessment

target

System and Information
Integrity

SI

 FINAL
 DevSecOps Best Practices

© 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED. 34
Approved for public release. Distribution unlimited PR_23-02103-1. DevSecOps Best Practices Guide

Figure 4-27 NGINX InSpec Profile – Security Control Coverage

Date:

1 2 2(1) 2(2) 2(3) 2(4) 2(5) 2(9)* 2(10)* 2(11) 2(12) 2(13) 3 3(9)* 4 4(8)* 4(12)* 4(15)* 4(17)* 4(18)* 5 6 6(1) 6(2) 6(3) 6(5) 6(7)* 6(9) 6(10)

7 8 9* 9(1)* 10 11 11(1) 12 14 16* 16(3)* 17 17(1) 17(2) 17(3) 17(4) 17(9) 18 18(1) 18(4) 18(5) 19 19(5) 20 20(1) 20(2) 20(3)* 21 22

Awareness and Training AT 1 2 2(2) 3 4

1 2 2(3) 3 3(1) 3(2) 4 5 5(1) 5(2) 6 6(1) 6(3) 6(5) 6(6) 6(10)* 7 7(1) 7(2)* Assessment Legend:

8 8(1) 9 9(2) 9(3) 9(4) 10 10(1)* 11 12 12(1) 12(3) 16* 16(2)*

1 2 2(1) 2(2) 2(3) 2(6)* 2(7) 3 3(1) 3(2) 3(6)* 4 4(1) 4(2)* 5 5(1) 5(2) 5(3)

6 6(1) 6(2) 7 7(1) 7(2) 7(4) 7(5)* 7(5) 8 8(1) 8(2) 8(3) 8(4) 8(5) 9 10 11

Contingency Planning CP 7 7(1) 7(2) 7(3) 7(4) 8 8(1) 8(2) 8(3) 8(4) 9 9(1) 9(2) 9(3) 9(5) 10 10(2) 10(4)

Identification and
Authentication

IA 1 2 2(1) 2(2) 2(3) 2(4) 2(6)* 2(7)* 2(8) 2(9) 2(11) 2(12) 3 4 4(3)* 5 5(1) 5(2) 5(3) 5(11) 6 7 8 8(1) 8(2) 8(3) 8(4)

Incident Response IR 1 2 2(1) 2(2) 3 3(1)* 3(2) 4 4(1) 4(3)* 4(4) 4(6)* 4(7)* 5 5(1) 6 6(1) 7 7(1) 7(2)* 8 9* 9(1)* 9(2)* 9(3)* 9(4)* 10*

Maintenance MA 1 2 2(2) 3 3(1) 3(2) 3(3) 4 4(1) 4(2) 4(3) 4(6)* 5 5(1) 6

Media Protection MP 1 2 3 4 5 5(3)* 5(4) 6 6(1) 6(2) 6(3) 6(8)* 7 7(1) 8* 8(3)* C-1

Physical and Environmental
Protection

PE 1 2 2(1)* 3 3(1) 4 5 6 6(1) 6(4) 8 8(1) 9 10 11 11(1) 12 13 13(1) 13(2) 13(3) 14 15 15(1) 16 17 18 18(1)*

Planning PL 1 2 2(3) 4 4(1) 8

Personnel Security PS 1 2 3 3(3)* 4 4(2) 5 6 7 8

Risk Assessment RA 1 2 3 5 5(1) 5(2) 5(3)* 5(4) 5(5)

System and Services
Acquisition

SA 1 2 3 4 4(1) 4(2) 4(8)* 4(9) 4(10) 5 8 9 9(2) 9(5)* 10 10(1)* 11 11(2)* 11(5)* 11(8)* 12 13* 15 15(9) 16 17 21* 22*

1 2 3 3(2)* 3(3)* 3(4)* 3(5)* 4 5 7 7(3) 7(4) 7(5) 7(7) 7(8) 7(14)* 7(18) 7(21) 8 8(1) 8(2)*

10 12 12(1) 13 15 15(1) 17 18 19 20 21 22 23 24 28 28(1)* 32* 39 C-1 C-2

1 2 2(1) 2(2) 2(3)* 3 3(1) 3(2) 4 4(1)* 4(2) 4(3)* 4(4) 4(5) 4(14)* 4(16) 4(23)* 4(24)*

5 5(1) 6 6(2)* 7 7(1) 7(2) 7(5) 7(6)* 7(7) 7(14) 8 8(1) 8(2) 10 11 12 16

System and Communications
Protection

SC

System and Information
Integrity

SI

Control Family Control Number(s) (* indicates a non-mandatory control)

Access Control AC

Audit and Accountability AU
Green indicates a covered
control for the assessment

target
Configuration Management CM

CMS ARS 3.1 Control Coverage WorkSheet Assessment Target: NGINX Web Server Config (based on Apache STIG 2.2) 3/1/2018 Comment: InSpec Profile

 FINAL
 DevSecOps Best Practices

© 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED. 35
Approved for public release. Distribution unlimited PR_23-02103-1. DevSecOps Best Practices Guide

Figure 4-28 PostgreSQL InSpec Profile – Security Control Coverage

Date:

1 2 2(1) 2(2) 2(3) 2(4) 2(5) 2(9)* 2(10)* 2(11) 2(12) 2(13) 3 3(9)* 4 4(8)* 4(12)* 4(15)* 4(17)* 4(18)* 5 6 6(1) 6(2) 6(3) 6(5) 6(7)* 6(9) 6(10)

7 8 9* 9(1)* 10 11 11(1) 12 14 16* 16(3)* 17 17(1) 17(2) 17(3) 17(4) 17(9) 18 18(1) 18(4) 18(5) 19 19(5) 20 20(1) 20(2) 20(3)* 21 22

Awareness and Training AT 1 2 2(2) 3 4

1 2 2(3) 3 3(1) 3(2) 4 5 5(1) 5(2) 6 6(1) 6(3) 6(5) 6(6) 6(10)* 7 7(1) 7(2)* Assessment Legend:

8 8(1) 9 9(2) 9(3) 9(4) 10 10(1)* 11 12 12(1) 12(3) 16* 16(2)*

1 2 2(1) 2(2) 2(3) 2(6)* 2(7) 3 3(1) 3(2) 3(6)* 4 4(1) 4(2)* 5 5(1) 5(2) 5(3)

6 6(1) 6(2) 7 7(1) 7(2) 7(4) 7(5)* 7(5) 8 8(1) 8(2) 8(3) 8(4) 8(5) 9 10 11

Contingency Planning CP 7 7(1) 7(2) 7(3) 7(4) 8 8(1) 8(2) 8(3) 8(4) 9 9(1) 9(2) 9(3) 9(5) 10 10(2) 10(4)

Identification and
Authentication

IA 1 2 2(1) 2(2) 2(3) 2(4) 2(6)* 2(7)* 2(8) 2(9) 2(11) 2(12) 3 4 4(3)* 5 5(1) 5(2) 5(3) 5(11) 6 7 8 8(1) 8(2) 8(3) 8(4)

Incident Response IR 1 2 2(1) 2(2) 3 3(1)* 3(2) 4 4(1) 4(3)* 4(4) 4(6)* 4(7)* 5 5(1) 6 6(1) 7 7(1) 7(2)* 8 9* 9(1)* 9(2)* 9(3)* 9(4)* 10*

Maintenance MA 1 2 2(2) 3 3(1) 3(2) 3(3) 4 4(1) 4(2) 4(3) 4(6)* 5 5(1) 6

Media Protection MP 1 2 3 4 5 5(3)* 5(4) 6 6(1) 6(2) 6(3) 6(8)* 7 7(1) 8* 8(3)* C-1

Physical and Environmental
Protection

PE 1 2 2(1)* 3 3(1) 4 5 6 6(1) 6(4) 8 8(1) 9 10 11 11(1) 12 13 13(1) 13(2) 13(3) 14 15 15(1) 16 17 18 18(1)*

Planning PL 1 2 2(3) 4 4(1) 8

Personnel Security PS 1 2 3 3(3)* 4 4(2) 5 6 7 8

Risk Assessment RA 1 2 3 5 5(1) 5(2) 5(3)* 5(4) 5(5)

System and Services
Acquisition

SA 1 2 3 4 4(1) 4(2) 4(8)* 4(9) 4(10) 5 8 9 9(2) 9(5)* 10 10(1)* 11 11(2)* 11(5)* 11(8)* 12 13* 15 15(9) 16 17 21* 22*

1 2 3 3(2)* 3(3)* 3(4)* 3(5)* 4 5 7 7(3) 7(4) 7(5) 7(7) 7(8) 7(14)* 7(18) 7(21) 8 8(1) 8(2)*

10 12 12(1) 13 15 15(1) 17 18 19 20 21 22 23 24 28 28(1)* 32* 39 C-1 C-2

1 2 2(1) 2(2) 2(3)* 3 3(1) 3(2) 4 4(1)* 4(2) 4(3)* 4(4) 4(5) 4(14)* 4(16) 4(23)* 4(24)*

5 5(1) 6 6(2)* 7 7(1) 7(2) 7(5) 7(6)* 7(7) 7(14) 8 8(1) 8(2) 10 11 12 16

System and Communications
Protection

SC

System and Information
Integrity

SI

Control Family Control Number(s) (* indicates a non-mandatory control)

Access Control AC

Audit and Accountability AU
Green indicates a covered
control for the assessment

target
Configuration Management CM

CMS ARS 3.1 Control Coverage WorkSheet Assessment Target: PostgreSQL 9.x STIG 3/1/2018 Comment: InSpec Profile

 FINAL
 DevSecOps Best Practices

© 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED. 36
Approved for public release. Distribution unlimited PR_23-02103-1. DevSecOps Best Practices Guide

Appendix B. Security Control Mapping to SANS Top 25 CWE

Minimum CWE used by code analysis tools to categorize security
defects (based on SANS Top 25 2011) Primary NIST SP 800-53 Controls
CWE-89 Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection') SI-10 - Information Input Validation

CWE-78 Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection')
SI-10 - Information Input Validation
SI-3 - Malicious Code Protection

CWE-120 Buffer Copy without Checking Size of Input ('Classic Buffer Overflow') SI-16 - Memory Protection
CWE-79 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') SI-10 - Information Input Validation

CWE-306 Missing Authentication for Critical Function
IA-5 - Authenticator Management
AC-14 – Permitted Actions Without Identification or Authentication

CWE-862 Missing Authorization AC-6 - Least Privilege
CWE-798 Use of Hard-coded Credentials IA-2 - Identification and Authentication (Organizational Users)

CWE-311 Missing Encryption of Sensitive Data
SC-13 - Cryptographic Protection
SC-28 - Protection of Information at rest

CWE-434 Unrestricted Upload of File with Dangerous Type SI-10 - Information Input Validation
CWE-807 Reliance on Untrusted Inputs in a Security Decision SI-10 - Information Input Validation
CWE-250 Execution with Unnecessary Privileges AC-6 - Least Privilege

CWE-352 Cross-Site Request Forgery (CSRF)

SC-23 - Session Authenticity
AC-10 – Concurrent Session Control
AC-11 – Session Lock
AC-14 – Permitted Actions Without Identification or Authentication

CWE-22 Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')
AC-3 – Access Enforcement
SI-10 – Information Input Validation

CWE-494 Download of Code Without Integrity Check SI-7 - Software, Firmware, and Information Integrity
CWE-863 Incorrect Authorization AC-3 - Access Enforcement
CWE-829 Inclusion of Functionality from Untrusted Control Sphere SI-10 - Information Input Validation
CWE-732 Incorrect Permission Assignment for Critical Resource AC-3 - Access Enforcement

CWE-676 Use of Potentially Dangerous Function
SI-10 - Information Input Validation
SI-11 - Error Handling

CWE-327 Use of a Broken or Risky Cryptographic Algorithm
SC-13 - Cryptographic Protection
SC-28 - Protection of Information at rest

CWE-131 Incorrect Calculation of Buffer Size SI-10 - Information Input Validation

CWE-307 Improper Restriction of Excessive Authentication Attempts

SC-23 - Session Authenticity
AC-10 – Concurrent Session Control
AC-11 – Session Lock
AC-14 – Permitted Actions Without Identification or Authentication

CWE-601 URL Redirection to Untrusted Site ('Open Redirect')
SI-10 - Information Input Validation
AC-3 - Access Enforcement

CWE-134 Uncontrolled Format String SI-10 - Information Input Validation
CWE-190 Integer Overflow or Wraparound SI-10 - Information Input Validation

CWE-759 Use of a One-Way Hash without a Salt
SC-13 - Cryptographic Protection
SC-12 - Cryptographic Key Establishment and Management

 FINAL
 DevSecOps Best Practices

© 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED. 37
Approved for public release. Distribution unlimited PR_23-02103-1. DevSecOps Best Practices Guide

Appendix C. Security Control Mapping to OWASP Top 10

OWASP categories used by code analysis tools to categorize
security defects (based on OWASP Top 10 2013) Primary NIST SP 800-53 Controls
A1 Injection SI-10 – Information Input Validation

A2 Broken Authentication and Session Management

SC-23 - Session Authenticity
AC-10 – Concurrent Session Control
AC-11 – Session Lock
AC-14 – Permitted Actions Without Identification or Authentication

A3 Cross-Site Scripting (XSS) SI-10 – Information Input Validation

A4 Insecure Direct Object References
AC-3 – Access Enforcement
SI-10 – Information Input Validation

A5 Security Misconfiguration CM-6 – Configuration Settings

A6 Sensitive Data Exposure
SI-11 – Error Handling
SC-4 - Information in Shared Resources
SC-28 – Protection of Information at Rest

A7 Missing Function Level Access Control
CM-7 Least Functionality
AC-3 – Access Enforcement

A8 Cross-Site Request Forgery (CSRF) SC-23 – Session Authenticity
A9 Using Components with Known Vulnerabilities SI-2 – Flaw Remediation
A10 Unvalidated Redirects and Forwards SI-10 – Information Input Validation

OWASP categories used by code analysis tools to categorize
security defects (based on OWASP Top 10 2017) Primary NIST SP 800-53 Controls
A1:2017-Injection SI-10 – Information Input Validation

A2:2017-Broken Authentication

SC-23 - Session Authenticity
AC-10 – Concurrent Session Control
AC-11 – Session Lock
AC-14 – Permitted Actions Without Identification or Authentication

A3:2017-Sensitive Data Exposure
SI-11 – Error Handling
SC-4 - Information in Shared Resources
SC-28 – Protection of Information at Rest

A4:2017-XML External Entities (XXE) SI-10 – Information Input Validation

A5:2017-Broken Access Control
AC-3 – Access Enforcement
SI-10 – Information Input Validation
CM-7 Least Functionality

A6:2017-Security Misconfiguration CM-6 – Configuration Settings
A7:2017-Cross-Site Scripting (XSS) SI-10 – Information Input Validation
A8:2017-Insecure Deserialization SC-23 - Session Authenticity
A9:2017-Using Components with Known Vulnerabilities SI-2 – Flaw Remediation

A10:2017-Insufficient Logging&Monitoring
AU-12 Audit Generation
AU-6 Audit Review, Analysis, and Reporting

 FINAL
 Acronyms

© 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED. 38
Approved for public release. Distribution unlimited PR_23-02103-1. DevSecOps Best Practices Guide

Acronyms

Acronym Definition
AC Access Control

ATO Authorization to Operate (also: Authority to Operate)

CCE Common Configuration Enumeration

CD Continuous Delivery (also: Continuous Deployment)

CI Continuous Integration

CIO Chief Information Officer

CIS Center for Internet Security

CISO Chief Information Security Officer

CM Configuration Management

CVE Common Vulnerabilities and Exposures

CWE Common Weakness Enumeration

DevOps Development (and) Operations (working together)

DevSecOps Development, Security, Operations (working together)

DISA Defense Information Systems Agency

DORA DevOps Research and Assessment

FISMA Federal Information Security Modernization Act (2014)

IA Identification and Authentication

ISSO Information System Security Officer

JSON JavaScript Object Notation

NIST SP National Institutes of Standards and Technology Special Publication

OWASP Open Web Application Security Project

RBAC Role-based Access Control

SANS SysAdmin, Audit, Network, and Security

SIA Security Impact Analysis

SIEM Security Information and Event Management

SSP System Security Plan

STIG Security Technical Implementation Guide

